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Abstract

Many researchers have considered left preconditioners, applied to linear systems,
whose matrix coefficient is a Z— or an M —matrix, that make the associated Jacobi
and Gauss-Seidel methods converge asymptotically faster than the original ones. Such
preconditioners are chosen so that they eliminate the off-diagonal elements of the same
column or the elements of the first upper diagonal (Milaszewicz [14], Gunawardena et
al [5]). In the present work a generalization of the previous techniques is proposed
in order to obtain optimal methods. The best Jacobi and Gauss-Seidel algorithms
are given and preconditioners, that eliminate more than one entry per row, are also
proposed and analyzed.
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1 Introduction and Preliminaries
Consider the linear system of algebraic equations
Az = b, (1.1)

where A € IR™" belongs to the class of irreducibly diagonally dominant Z—matrices with
positive diagonal entries (see [3], [15] and [17]), that is its off-diagonal elements are nonpos-
itive, (a;; <0, 4,7 = 1(1)n, j # ,) and b € IR™. Since a; > 0, i = 1(1)n, without loss of
generality, we assume for simplicity that a; = 1, 4 = 1(1)n. We consider the usual triangular
splitting of A, namely

A=T1-L-U, (1.2)

where I is the identity matrix and L and U are strictly lower and strictly upper triangular,
respectively. Then, it is known that the iterative methods of Jacobi and of Gauss-Seidel
associated with (1.1) converge and by the Stein-Rosenberg theorem ([15], [17], [3]) the Gauss-
Seidel method is faster than the Jacobi one.

Many researchers have considered left preconditioners, applied to system (1.1) that make the
associated Jacobi and Gauss-Seidel methods converge asymptotically faster than the original
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ones. Milaszewicz [14] who, in turn, based his idea on previous ones (see, e.g., [13], [4], [9]),
considered the preconditioner P, = I+S;, which is the elementary matrix used to eliminate
the elements of the first column of A below the diagonal. Gunawardena et al [5] considered
as a preconditioner the matrix P, = I+ S,, whose effect on A is to eliminate the elements
of the first upper diagonal. Kohno et al [10] extended the main idea in [5]. Recently Li
and Sun [11] extended the class of matrices considered in [10] and very recently Hadjidimos,
Noutsos and Tzoumas [6] extended, generalized and compared the previous works.

In this paper we introduce a family of preconditioners, by extending the previous ones,
and give the algorithms that choose a “good” preconditioner in each case. The outline
of this work is as follows: In Section 2, we extend Milaszewicz’s and Gunawardena et al’s
preconditioners by giving a family of preconditioners based on the elimination of one element
in each row of the matrix A, we present the convergence analysis and propose two algorithms
that choose a “good” preconditioner for the Jacobi and Gauss-Seidel iterative schemes. In
Section 3 we generalize the above preconditioners by introducing the idea of eliminating
more than one entry per row and study the corresponding convergence analysis. Finally, in
Section 4, numerical examples are presented in support of the theory developed.

2 Extending known Preconditioners

It is known that Milaszewicz’s preconditioner [14] is based on the elimination of the entries
ai1,¢ = 2(1)n, (the first column) while the Gunawardena et al’s preconditioner [5] is based
on the elimination of the entries a;;41,7 = 1(1)n—1, (the first upper diagonal). The common
feature of the two preconditioners is that they eliminate precisely one element of A in each
but one row. If we try to extend Milaszewicz’s preconditioner by eliminating an off-diagonal
element of the first row we obtain the same convergence results for the Jacobi and the
Gauss-Seidel type schemes, since the spectral radii of the corresponding iteration matrices
associated with A; = P, A, which are reducible, are independent of the off-diagonal elements
of the first row of A (see [6]). This does not happen in the case of Gunawardena et al’s
preconditioner by eliminating an off-diagonal element of the last row. If we choose the first
element of the last row, we introduce a new preconditioner having a cyclic structure and we
call it Cyclic preconditioner:

1 —ai12
1 —ada3

P3 = I+S3 =S 1 —0Qji+1 . (21)

1 —Qn-1n




This observation gives us the idea of considering a family of preconditioners by eliminating
exactly one element per row. So, we have a preconditioner of the following general form:

i
1 —Q1k,
1 — A2k,
1 -a3k3

L —Qnk, 1 .

where k; € {1,2,...,i—1,i+1,...,n}, i = 1(1)n. It is obvious that we have n — 1 choices
for each row, so we have a total number of (n — 1)* choices for the preconditioner of type
P in (2.2). We denote A = PA the associated preconditioned matrix. We will assume that
there is at least one pair of indices %, 7, such that a;, ar,; # 0, so that at least one element of
A is different from that of A. Applying P to (1.1) we obtain the equivalent linear system

Az =b, with A= (I+8)A, b=(I+S5)b. (2.3)

The elements @;; of A are given by the relationships:

Qjj — Qi Oyq < 0, ) -7é ki,i
&ij =
l—ap,05:>0 jF=i

We define the matrices

Ds = diag(alklakil, agkzakzg, wita ,anknaknn) (25)

and
S(L+U-1)=Ls+Ds+U,— S, - Sy, (2.6)

where D;, L, and U, are the diagonal, the strictly lower and strictly upper triangular com-
ponents of S(L + U) while Sy and Sy are the strictly lower and strictly upper triangular
components of S, which are all nonnegative matrices. To introduce the iterative methods
that will be studied the following splittings are considered:

) M-N = (I+8)—I+8)(L+U),
A={ M-N = I-(L+U+Ly+Ds+U,~S; - Sy), (2.7)
M'—N'" = (I-Dy)—(L+U+L;+U, -8, — Sy).

The corresponding Jacobi and the Jacobi type iteration matrices as well as the corresponding
Gauss-Seidel and Gauss-Seidel type ones are given by

B=M*N=L+

B':=M7N' =(L+U+Ly+Ds+U,~ S, - Sy), (2.8)
Bi=M"'N'=(I~D) " (L+U+L,+U,— 85— Sy),



and
H = (I —LU,
H :={I-L-Li+5)" (U+Ds+U;—Sy), (2.9)
H=(I-Dy—L—-L;+8)"(U+U,—8y).

The main property of this section can now be stated and proved:

Theorem 2.1 o) Under the assumptions and the notation so far, there hold:
There eristy and z € IR"™, with y > 0 and z > 0, such that

B'y < By and H'z < Hz, (2.10)
p(B)<p(B)<p(B) <1, (2.11)
p(H)<pH)<p(H) <1, (2.12)
p(H)<p(B), p(H)<p(B), p(H)<p(B)<L. (213)

(Note: Equalities in (2.13) hold if and only if p(B) = 0.)
b) Suppose that A is irreducible. Then, the matriz B is also irreducible which itmplies that
the first inequality in (2.10) and the middle inequality in (2.11) are strict.

Proof: a) (2.10): To prove (2.10) we give the explicit expressions of the elements of the
first two Jacobi and Jacobi type iteration matrices in the splittings (2.8):

b=
" ’ o 2.14
{ bij = —ai;, JF#1, (2:14)

ik; O’
{ b;’l. = aikia’kii = b’ikibkiiy (215)
bij = Gir, k5 — @i = big;bes +bij,  JF Lk
For the nonnegative Jacobi iteration matrix B there exists a nonnegative vector y such
that By = p(B)y. Equating the i** rows, of the two vectors and replacing the elements 8
of B in terms of the elements b; of B’ using (2.14) and (2.15) we successively obtain

p(B)yi = _7 =1,j5i 'tjyj ZJ 1,554 k; b‘ljy_? .2 bzkgyk
- J Lj#iki buyf ik, 351 gt ks Okid Ui + iUk, (2.16)
= g 5' — biky 2721 jotk; Oris¥s + ik brali + bik, Uk, '
= _1 by — bzk,; > i1 Orsi¥s + bk, Y-

Using the fact that p(B)yki = Y71 bk;;y; and replacing in (2.16) we have that

Z bl ]y_;, + bzkz (p ) Z bkgyj (2.17)

Since the second term of the sum in (2.17) is nonnegative we have that

ijyj = Zb,;,yJ (2.18)

j=1



from which the first of (2.10) follows.

For the nonnegative Gauss-Seidel iteration matrix H there exists a nonnegative vector z
such that Hz = p(H)z. Using the fact that H = (I — L)~'U we have that (I — L)‘le =
p(H)z or Uz = p(H)(I — L)z or equivalent p(H)z = p(H)Lz + Uz. Equating the i*" rows,
of the two vectors and replacing the elements b;j of B in terms of the elements bi; of B’
using (2.14) and (2.15) and suppose that k; > i (we have the same result in case k; < i) we
successively obtain

p(H)z; = p(H) Zl —11 buz: yioa Ej‘—t+1 bthJ _
= (H) Zz p(H)bik, 527 brijz (2.19)
+ J ey bij bzk, Z'—zg#k bk,_y Zj + b,;k i 2k -
Using the fact that p(H)zx, = p(H) Zj_ i bk, 25+ Gk, +1 bki5 25 OF equivalently z, = Z; 1 bkﬂzj
() 2j=ki+1 Ok:j2; and replacing in (2.19) we have that

p(H)z; = p(H )Z} lle;ZJJrZ

j=k;+1

~

=

>0
Since the underbraced term in (2.20) is nonnegative we have that

i—1 n
H)(z— Y b;z) 2 Y bz, i=1(1)n. (2.21)
Jj=1 j=t

In terms of matrices, this relation is equivalent to

p(H)YI—-L—Ls+Sp)z> (Ds+U+U,— Sy)z or
p(H)z2>2 (I —L—Ly+S.) Y (Ds +U+U,— Sy)z or p(H)z> H'z

from which the second of (2.10) follows.

a) (2.11): Since a Z—matrix A4 is a nonsingular M —matrix iff there exists a positive vector
y(> 0) € IR™ such that Ay > 0 (see [3]), we have that P = I + S > 0, implies Ay =
PAy > (0. Consequently, A, which is a Z— matrix, is a nonsingular M —matrix. So, the
last two splittings in (2.7) are regular splittings because M'™' = I~ =] >0, N’ > 0 and
M = (I = Ds)™' > 0, N” > 0 and so they are convergent. Since M”"~ -1 > M7 it is
implied (see [16]) that the left inequality in (2.11) is true. We recall now, for the proof of the
middle inequality in (2.11), the first inequality of (2.10) which gives us that B'y < p(B)y.
Then, we apply Lemma 3.3 by Marek and Szyld ([12]) to get our assertion. N
a) (2.12): To prove the first inequality in (2.12) we use regular splittings of the matrix A.
Specifically, consider the following splittings that define the iteration matrices in (2.9):

(2.22)

. M-N = (I+S)I-L)-({+9)U,
A={ M-N = (I-L—-L;+8;)—(Ds+U+U, - Sy), (2.23)
M = Nt = (T—Dy—L— L, % 85) — (I 4+ Uy~ 58p)

where we have used the same symbols for the two matrices of each splitting as in the case
of (2.7). So, the last two splittings in (2.23) are regular splittings because M’ = (I —



L-Li+S)'=I+(L+Li—S)++(L+L;—S)"*>0, N >0and M =
(I-Dg—L~—L¢+ S;)™* >0, N” > 0 and so they are convergent. Since M”™* > M'~! it
is implied (see [16]) that the left inequality in (2.12) is true.

To prove the second inequality of (2.12) we consider first, that the Jacobi matrix B is
irreducible. For the nonnegative Gauss-Seidel iteration matrix H there exists a nonnegative
vector z such that

Hz=p(H)zor (I - L)y 'Uz=p(H)z or (o(H)L+U)z = p(H)z. (2.24)

We observe here that the matrix p(H)L + U has the same structure as the matrix B and
consequently it is an irreducible matrix. So, from the Perron-Frobenius Theorem (see Varga
[15]), the eigenvector z will be a positive vector. Recalling now the relation (2.22), the
following property holds: There exists a positive vector z such that p(H)z > H'z. On this
property, we can apply Lemma 3.3 by Marek and Szyld ([12]) to get the second inequality
in (2.12). In the case where B is reducible, we consider a small number ¢ > 0 and replace
some zeros of B with € such that the produced matrix B(e) will be an irreducible matrix.
Then, for the associated matrices H(¢) and H'(e) there holds: p(H'(€)) < p(H (€)). Since the
spectral radius is a continuous function of the elements of the matrix, the inequality above
will also hold in the limit as € tends to zero, which is the second inequality in (2.12).

a) (2.13): Since A is a nonsingular M—matrix, the rightmost inequality is a straightforward
implication of the Stein-Rosenberg Theorem as was mentioned before. The other two in-
equalities in (2.13) are implied directly by the facts that A is a nonsingular M —matrix, and
the last two pairs of splittings in (2.7) and (2.23), from which the four matrices involved,
H, B, H', B, are produced, are regular ones with L+ L, + U+ U, — S > U + Us — Su
and Ds+ L+ Ly +U+Us; =S > Dy +U + Us — Sy. It is noted here that if p(B) = 0
then p(H) = 0 and the matrix B would be reducible with its canonical form being a strictly

—_—

upper triangular matrix. On the other hand if p(B) = p(H), from the Stein-Rosenberg
theorem we have either p(B) = p(H) = 0 or p(B) = p(H) = 1. Since p(B) < 1, both
spectral radii would be zero. For the second inequality of (2.13) we have that the matrix B
has the same structure as the matrix B’. So, if p(B) = 0, the matrix B’ would be reducible
with its reducible canonical form being an upper triangular matrix and its spectral radius
being obtained from its diagonal elements. This means that in the directed graph G(B’)
of the matrix B’ there is not any strongly connected subpath except the identity paths
(loops) corresponding to the nonzero diagonal elements. For the matrix H' we have that
H =(I-L—L+S.) Y Ds+U+U;~Sy) = (I+(L+L;—Sr)+-+-+(L+Ls—S.)" ) (Ds+
U+Us—Sy) = D+ [U+Us—Su+((L+Ls—Sp)++ -+ (L+Ls—S.)" N (Ds+ U +Us — Syy)).
Since the matrix in the brackets is a sum of products of nonnegative parts of the matrix
B', it holds that if there exists a path in the graph of this matrix, then there exists also
such a path, of some order, in the graph G(B’). So, if there exists a strongly connected
subpath in the graph of the matrix in brackets, then it will exist also such a subpath in
G(B’). This means that the matrix H’ has also its canonical form being a strictly upper
triangular matrix, with the diagonal elements being those of B'. This proves our assertion
that p(B') = p(H').

b) (2.10): Since B is irreducible, The eigenvector y, corresponding to p(B), is positive and
according to the steps in the proof of (2.10) in (a) we can see that inequality (2.18) becomes
a strict one.



b) (2.11): From the inequality B'y < By we get B'y < p(B)y. Now we can apply Lemma
3.3 by Marek and Szyld ([12]) to get the strict inequality p(B’) < p(B). O

2.1 Best Jacobi Preconditioner

It was proved that the preconditioned Jacobi method converges for each choice of the matrix
S and it converges faster than the initial Jacobi method. There is a question now: Is there
an optimum choice of the matrix S such that the associated method will be an optimum
one and if so how can one choose the matrix S? This question has not been answered vet
and constitutes an open and very difficult problem. It is difficult since we have to compare
the spectral radii of (n — 1)" different matrices. So, instead of this we will try to answer the
easier question: Is there a “good” choice of the matrix S such that the associated method
will be the best among many others and maybe it will be the optimum one? We try to
answer this question by working on sufficient conditions of convergence instead of sufficient
and necessary ones. So, we choose the matrix S such that it will minimize the maximum
norm of B which constitutes an upper bound for its spectral radius.
For the Jacobi iteration matrix, B to converge a sufficient condition is

~ ~ ~ l; + u;

p(B) <IBlleo = p(B) < max- — <1, (2.25)

1 .

1

where _

di = |G| = @i = 1 — ai,apa, _ _

=00 ] = - S50 3y = an, T2 aky — o1 a5 (2.26)
Ui = Xhmin 8] = — Xfoin Gij = @i, Thmip1 Okig — Limier G-

We propose the following method: For each row 7 we choose k; such that all the ratios ﬁi’r’_‘i

will be minimized, so, the maximum of them will also be minimized. The choice of k; is
not unique and so, the choice of S is also not unique. We conjecture here that since we
minimize all the ratios for each row, which are the row sums of the nonnegative matrix
B, the new spectral radius will be as small as possible. We call this method the Best
Jacobi preconditioned method and the associated preconditioner, I + S , the best Jacobi
preconditioner. From (2.26) we get that

mn n n

Li+d=— Z Gij = Qig, Z Q5 — Z aij = 8i + Qi (1 — g, — agi), (2.27)
j=Lj#i F=Li =15

where s; = —37_, i, ai; is the i row sum of B. From the nonnegativity of the Jacobi

matrix B and from the diagonally dominance of A it is obvious that 0 < s; < 1. So, the
ratios in question are given by

g i+, (1—8g, —ak.;
Litu; £l Sit+aik, ( Sk akzz) . (228)
d; I-air; ak;:

We have to give an efficient algorithm which will choose the indices k; and consequently
the matrix S. It is well known that every iteration of the Jacobi method requires O(n?) ops.



The same number of operations are required for the matrix-matrix multiplications (I +S)A.
So, for the algorithm to be efficient regarding the cost of the choice of S, it must require at
most O(n?) ops. First, we have to compute all the row sums s; which require a total number
of O(n?) ops. Then, we have to compute the ratios (2.28) for every i and every k;. The total
number of ratios is (n — 1)n and so the number of required operations for each one is (9(1).
The number of comparisons is also O(n?) and so, the total cost of the algorithm is O(n?)
ops. This makes it an efficient one. The previous analysis of the cost is shown much clearer
in the following algorithm written in a pseudocode form.

Algorithm of Best Jacobi Method
fori=1(1)n
8, = 0
for j = 1(1)i — 1
8 = §; — aij
endfor
forj=¢+ 1(1)n
§; = & — Q4
endfor
endfor
fori=1(1)n
r=1
for j =1(1)n
if j # 4 then
. si+ai;(1—s;—ajq)
l1—-a;;a4;
if t < r then
r=t¢
ki=j
endif
endif
endfor
endfor
End of Algorithm

We remark that, in case there are multiple choices of the matrix S, this algorithm chooses
the one with the smallest value for each k;.

2.2 Best Gauss-Seidel Preconditioner

The same questions, as before in the Jacobi method, are also raised in the Gauss-Seidel
method. Trying to answer them, we arrive at the same conclusions, that is, the matrix
S should be chosen by minimizing the maximum norm of the preconditioned Gauss-Seidel
iteration matrix H. The associated sufficient condition is ([7], [8])

p(H) < Hllw=>p(H) < max=—=<1. (2.29)



;From (2.26) we have that

5 -~ — i—1

di—lLi=%' 8;=1+ EJ 1ai — ik, j=1 Tk (2.30)
e L . ‘

i == Z j=i+1 a‘lj‘ @ik, Z j=i+1 Qksj Zj=‘i+1 -

1

In this case we have one more difficulty since we have to compute all the subsums from 1
to ¢ and from i+ 1 to n for all rows in each step, while in the Jacobi case we had to compute
only the row sums. If we do it, the cost of the algorithm will become greater than O(n?),
and the algorithm will not be an efficient one. So, we have to be more careful in order to
reduce the cost to O(n?). Here we introduce the following notations:

n

Soap, sip=— Y ap 4j=1(1)n (2.31)

k=1k#j k=i+1,k#j

In view of (2.31), the first relation of (2.30) takes the form

7 7 J1-futau(fea—1), ki <i
&=k { 1 - fi + Gik; fugir H Ky >4 (2.32)

while the second relation of (2.30) takes the form

i Sii — Qik. Sk.i, I b <1
= Sk . 2.3
b { Sii — aiki(skii e ].), if ki >1 ( 3)

So, the ratio 3—51'7 is given by

-

S

1-fiitau, (fr:—1)7 (2 34)
di—1; - ‘

{ S4i—Qik,; Sk;4 lf k_z < E
i =ik, (Sk;e—1) . .
1= fiitik; ey if fe; > 4
We can observe here that in the search of k; we need only the row sums f;; and s;; for all
rows ¢ = 1(1)n, in the search of k, we need only the row sums f;» and s;» and so on. So,
to construct an efficient algorithm we use the following technique: First, we compute all the
off-diagonal row sums denoted by sio (Si0 = — Xfey i @it )s & = 1(1)n, and set fip = 0,
i =1(1)n. Then, we can see that the following relations hold:

fii=framr— a5, si =sjtau, 4,5=1n, i#j, (2.35)
= Lty 8 = 8ii-1, 1= 1(1)

which means that form one step to the next only one addition is required to compute the Ji'’s
and s;;'s. This observation reduces the cost of the algorithm to O(n?) ops. Since @, = 0,

the ratio Z;T is also equal to zero. In this case, the sufficient condition does not give us
any information for the choice of k,,. We can choose it randomly or by using the best Jacobi
algorithm, since p(H) < p(B) < max; —1%1 For i = n — 1 we can see that we have the

unique choice k,—; = n in which case the ratio in question takes the value zero. So we have
n — 2 searching steps. In pseudocode, the Best Gauss-Seidel Algorithm is as follows.
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Algorithm of Best Gauss-Seidel Method

fori=1(1)n
Sz‘:U
fi=0

for j=1(1)i—1
§; = 8§; — Q5
endfor
forj =1+ 1(1)n
Si = S§i — Q45
endfor
endfor
for i = 1(1)n — 2
r=1}%
for j=1(1)i -1
8 = 8; + aj;

fi = fi — a;i

t - Si—@iiSq
T 1-fitaii(fi—1)
ift < rthen

r=t
ki = J
endif
endfor
for =14+ 1(1)n

$ = Sizai(s;—1)
1-fi+ai; fj
if t < r then
= §
k=
endif
endfor
endfor
kn-—l =n

End of Algorithm

The same remark, as in the Best Jacobi algorithm can also be made here. Moreover, we
can see that the parameters f; and s; were used here instead of f;; and sj;, respectively.
This is because, only two positions of memory are needed to store the quantities f;; and
s;; for each row. Furthermore, it is seen in the algorithm that, before the beginning of the
search, in each row, we give 7.7 as the initial value to the ratio (the value of the ratio
without any improvement) and k; = 0. This is done in order to cover the case where the
ratio is already the smallest one, meaning that no improvement on the row 7 is required. In

this case we have as output k; = 0.
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3 Generalized Preconditioners based on multiple elim-
ination

In this section we will generalize and extend our improved method by eliminating two or
more off-diagonal elements in each row. So, the matrix S, introduced in (2.2), will have
more than one elements in each row, at exactly the same positions as the elements we want
to eliminate. First, we consider that in the i** row we have to eliminate the elements k; and
l;, where, without loss of generality, k; < l;. For this we have to compute the elements sy,
and sy, of the matrix S. Denoting A = (I + S)A we have the equations:

Gk, = 0 = aw, + Sik, + Sa, Qi o Sk TSk = —aak
ay, = 0 = ay, + Sig, Qra, + Su, Sik,Qkyl, + Sit;, = —aq,

i

: (3.1)
or

1 apg
(Sik;, Sa,) ( i ) = —(ay, ay) <
Al k; 1

-1
1 QL.1.
(8, 8it,) = —(ain; au,) ( kl'l‘ ) :

Qi k;

(3.2)

We will try to generalize the above relations by considering that m elements of the it* row
are to be eliminated. For this we give the following definitions. Let k7 = (k; ks, . . .k, ) be
a multiindex, where the indices k;, < k;, < ... < k;__ denote the positions of the elements of
row ¢ to be eliminated. Then, we define by 55’:,- = (Siky, Sik,, - - - Sik,,, ) the vector of nonzero
off-diagonal elements of the i** row of S, af}ci = (Qik;, Qiky, - - - Gik,,, ) the vector of the elements
of the ¢*" row of A to be eliminated and the matrix

1 By kin Ok;, ki,
Qfe; ks i o Ak ks

2™y 12 m
Ay kiiy  Ckipksy 1

which consists of the rows and columns of A indexed by the multiindex &;. The matrix Az is
a principal submatrix of the M —matrix A. So, Aj, is also an M —matrix and its inverse Ar o
is a positive matrix if A; is irreducible or a nonnegative one if A;. Is reducible. Therefore

relation (3.2) takes the follomng generalized form:
» _aisz-* (3.4)

T

Sip: =

After the previous notations and considerations the elements @;; of A are as follows:

B ai; — aiTiziA]z,;laéij < Q, 7 # E,j ¢ ]}i,
aij =4 0, j € &y, (3.5)
1-af Atlap; >0, j=i.

The first inequality in (3.5) is obvious while the last one is to be proved. For this we denote
by Ajjx the submatrix of A after the deletion of its i** and j** rows as well as its k" and
I*™ columns. We give now the next lemma which is needed for the proof.
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Lemma 3.1 Let the matriz A € R™ and the multiindex i = (2,3,...,n), then there holds
det(A) = ay; det(A11) — aEadj(Algl)a;u (3.6)

Proof: It is easy to see that the (j,1)™ element of the adjoint matrix (adj(A;.;)) of A,
is equal to (—1)""7 det(Ay;.1:). So, by expanding det(A), first along its first row and then
along its first column we get:

det(4) = YL, (—1)"ay;det(Ar) ,
= andet(4; 1)‘5‘2 o(=1)"*ay; ;=2(—1)Jaj1det(Alj;li)

= a1 det(Al,l) 7’=2 ?:2(—1)”3@1,-(13-1 det(A'lj;u) (37)
= an det(Al;l) — algadj(Al;l)a:‘-l
O
We consider the matrix
i = (11 (3.8)
B\ e [ 4y | '

which is an extension of A4; . by adding the " row and column as the first row and column,

respectively. Since the matrlces A ~and A;_ are two principal submatrices of the M —matrix
A they are also M —matrices and so they have positive determinants. We use now the well
known relation which connects the inverse of a matrix with respect to its adjoint matrix and
its determinant and the previous Lemma to get

dj(A; det(Ayz,) — af; adj(Ag )ag,;  det(Ag
1—a A o, —1_ kaJ"( kl)afcr: ( k) ( )k _ et( k,)>0. (3.9)
: % tdet(Ag,) ™ det(A i) det(A)
We define the matrix
D, := diag(a], A GG %zA By 43 % nkﬁA;ﬂ A n)s (3.10)

which is the diagonal part of the matrix S(L+U). We use the same notations (2.5) and (2.6),
we consider the same splittings (2.7), and the associated Jacobi (2.8) and the Gauss-Seidel

schemes (2.9). So, we can give and prove the theorem below, which is the generalization of
Theorem 2.1.

Theorem 3.1 a) Under the assumptions and the notation so far, there hold:
There exist y and z € R, withy > 0 and z > 0, such that

B'y < By and H'2 < Hz, (3.11)
o(B)<p(B)<p(B) <L, (3.12)
p(H)<pH)<p(H) <1, (3.13)

o(F) <0(B), p(H)<p(B), olH)<p(B)<1 (3.14)

(Note: Equalities in (3.14) hold if and only if p(B) = 0.)
b) Suppose that A is irreducible. Then, the matriz B is also irreducible which implies that
the first inequality in (3.11) and the middle inequality in (3.12) are strict.
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Proof: a) (3.11): To prove (3.11) we use the explicit expressions of the elements for the
two Jacobi and Jacobi type iteration matrices. The elements of the Jacobi matrix B are the
same as those given in (2.14) while those of type Jacobi matrix B’ are modified as follows:

b; =0, j ek
b =ah A”lal—” = b Aplbge ) (3.15)
bl = GT A a’k_’,' z_j bf’klAkzlbkij 3 bi;h J # i'a.j ¢ ki

where bf; and by, j denote the row vector with elements the ones corresponding to the mul-

tiindex &; of the i** row of B and the column vector with elements the ones corresponding
to the multiindex &; of the j** column of B.
We follow the same steps as in the proof of Theorem 2.1. So,

p(B)y't = E?:l,jé{‘i‘fci} szy; T bf;c y,!c:

— n —l 1

- EJ 1,5€{i.k:} bi:,yj 1k E} Lielik:) b, Y7 +b A Ak ;{k .

= iy Ui — bzkA Z ljg{tk}bkjyj—l-b A yk b A 1‘5’,,c Yi,
i by — 0% A E 1 by ;Y5 + 0% /—1 Uk

(3.16)

Using the fact that p(B)y; = Y7, b;.;¥s» pre-multiplying it b bz}c_Alzl and replacing in (3.16)
we have that

1 ..
Jj=1

Since the second term of the sum in (3.17) is nonnegative we have that
Z biy; < > bijy (3.18)
j=1

from which the first of (3.11) follows.

For the nonnegative Gauss-Seidel iteration matrix H we use analogous considerations to
get the generalized version of (2.19) and analogous notations as in the nonnegative Jacobi
case. Moreover we define the multiindex k’ which consists of the indices of k; that are greater
than 4. Then, the inner product b% i R which will appear in the sequel, can be replaced by

bT . As Z;, we define the multiindexed by k; vector which consists of zeros in the places
where the index is less than 7 and of the elements of z;, in the places where the index is

greater than ¢. For simplicity we use p instead of p(H). After these notations we can get:

pz = p¥7_ Uék bijzi + (1= p) Z0_ 01 e bm-jzj—i—pr g, 4 (= )bk,zk,
= p¥iabuz4(1=p) i Ui 2 pr A % Zg 13¢ic klj
_ - )bT AZEY bka;,+pr Az +(1 p)bT ATALE (3.19)
= p¥i, IJz;,—i—(l— p) i bz prA Z;‘lbkaj
— (1— oL, AT S by 2 + pbf‘iA Dz, + (1- )bk AT'Z
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Using the facts that the I component of pzp, is given by pzy, = p Xl br, 2z + (1 —
P) ik, +1 b;c”_?z:J we have that pz; = p 37, bkaj + (1 — p)y;, where g, = X7_p 11 bk, 525
The vector pZj, has the components of pzj, in the places where the mdex is grea.ter than 2
and zeros elsewhere. So, pre-multiplying these vectors by bT A and replacing into (3.20)
we have that

Pz P E z] "5 (1 ) _7_2 b:_a

+ bT A ( PZ? y by, JZJ (1= P) Zn—z b, g%t 92?31 b;}ijzj
+ (1 - )yki +(1-p) bkz,.,zj ¥ =1f)
= pY0 b2+ (1 0> 7 abiE (3.20)
_ n n - 1 _
+ bgf:ciAfcil ((1 = ,0) (“— Zb;cijzj + Yk, + Z; bfcijzj) + (; — 1) yfc;) ,
j:': j=

where the vectors FZ;;CI, and ¥;, have the components of b; and y; , respectively, in the places
where the index is greater than 7 and zeros elsewhere. The [** component of the underbraced
term in (3.20) is given by:

(1= P)(= Zjmi bry 325 + Lok 41 Okyi2) = (1= 0) iy 11 bhi525 20, iy <

5 i 3-21
[ = = 3 z bkzljzj + 23 ki +1 bkquj + z_?zl bki,jzj + (% ~k) j=ki, +1 bkz‘,jzj) ( )
=(1- )(Ez bkztgzj = L ! bkquj’) + (’15 —:1) Z?:kil+1 bkiljzj 20, ky>1
So, the unterbraced term of (3.20) is a nonnegative vector. Hence, we get that
sz]zj )2 3" b, i=1{1)n (3.22)
j=i
This relation is equivalent, in terms of matrices, to
pI—L—Lg+S5)z>(Ds+U~+Us;—Sy)z or (3.23)

pz> (I —L—Li+S.) (Ds+U+U;—Sy)z or pz>H'z

from which the second of (3.11) follows.
If we use the same notations, the proof of Theorem 3.1 for all the other inequalities follows
step by step that of Theorem 2.1, and so, the proof of the present statement is complete. O

;From now on we have to prove convergence theorems of the proposed improved methods
when compared to each other. For the multiindexed improved method, it remains to study
the best choice of the multiindex &;. This is a very difficult problem, more difficult than
that of the “best” choice corresponding to one elimination per row. However, it is possible
to compare the multiindexed improved methods, in the case where the one is a subcase of
the other as this is given in the following comparison theorem.
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Theorem 3.2 a) Let A be a nonsingular M—matriz with a; = 1. We consider the multi-
indexed by k; and k';, i = 1(1)n preconditioning matrices I + Si and I + S, respectively,

where k'; C ki 0= 1(1)n. Then for the associated improved type Jacobi matrices B B..

- — kf?

improved type Gauss-Seidel matrices H, H;,, improved Jacobi matrices By, By, and im-
proved Gauss-Seidel matrices H Hk,, there hold:

p(By) < p(B) < p(By) < p(BL) <1, (3.24)

p(Hy) < p(H}) < p(Hg) < p(HL) <1, (3.25)

b) If the matriz B, is an irreducible matriz then the second from the left inequality of (3.24)
becomes strict.

Proof: a) The fact that all the spectral radii are less than 1 is obvious from Theorem 3.1.
We will prove all the other inequalities by proving the following property:

Suppose we apply successively the multiindezed by k precondztzoned technique to the ma-
tric A and then the multiindezed by k preconditioned technique to the matriz I — B We

denote by ka B’ 2 Hk’k and HL, - i the associated improved Jacobi, improved type Jacobz',
improved Gauss—Seidel and zmpmved type Gauss Seidel matrices, respectively, produced in
the second part of the successively improved technique. Then, there holds:

By =By, BL;> B (3.26)
H,.=H,, H,,>H. (3.27)

If this property holds, then from (3.12) of Theorem 3.1 and from the nonnegativity of
the above matrices, we get that

P(By) < p(By ;) < p(By) . p(By) < p(B}) < p(B) and p(B,) < p(BL;),  (3.28)

since the matrix ka plays the role of the Jacobi matrix corresponding to the initial matrix

I-B; w in the second part of the successively improving technique. The above three relations
give us _ N

p(B;) < p(By) < p(By)- (3.29)
So, relation (3.24) is proved. The inequalities (3.25) are proved in the same way from (3.13)
of Theorem 3.1 and (3.27), while the assertion (b) is proved from the assertion (b) of Theorem
3.1. It remains to prove the above property.
For simplicity we define by C the matrix I — E~3k~, and we use the same notations applied to
the matrix C as in the second part of the successively improved technique. So,

Cz‘j_cjf"c‘_-.lcfc-'<0’ j?éza j¢'§:i7
ik; " 4]

G =14 0, jek, (3.30)
1-¢;Cilg, >0, j=i
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(From (3.9) we get that E
det(Cy.)

T " i = 1(1)n. (3.31)

Cii =

Now we define by C” the matrlx which is the extension of Cj by adding as its first row the
assomated elements of the 7" row of C' and as its first column the associated elements of the

§™ column of C. So,
g (%o | %, 3.32
Cﬁ& = G ) | (3:32)

We use now the relation which connects the inverse of a matrix with respect to its adjoint
matrix and its determinant and Lemma 3.1 to get

dj (C; cij det(Cy,) — ¢ adj(Cy,)e det(C¥
Eijzcij—c?‘};_a .7( k;i-)cicl': o) ( k) j( )kj__ ( ki). (333)
i det(Cy,) det(C’ z_) det(Cy,)

The matrix C is produced from the matrix A after some elimination process corresponding
to the first step of improved, and then by dividing each row with the associated diagonal
elements. It is well known that the determinants as well as all the minor determinants are
invariant under an elimination process. So, det(C’E ) is equal to det(A:i) divided by the

product of the associated diagonal elements of A, corresponding to the first step, while the
denominator det(Cy ) is equal to det(A ) divided by the product of the associated diagonal

elements of A. The diagonal elements corresponding to the indices of &; coincide and are
eliminated, while the element @; which divides the numerator remains unchanged. So,

det(C’) det(A7)  det(AY)det(Ay)

det(C ) dEt( )CL” det(A,;)det(.fZl_fc;)’ J - 1(1)7’&,] ?é 2 (334)

&3

Cij =

while - =
¥ det(C‘ ¥ det(Ayz) det(A;}i)det(Aic;)
Cis = = T
det(Cy )  det(4; )au det(A;, ) det(4;)

(3.35)

The elements of B; w i B

i 5 as well as of B,;c and B, are given by

- —5; _ det(A7)det(Ay) det(4y,) det(Ay) det(A".J' )
& ; 4 i 24 5 2 :
(Bip)ij = ==+ =— s s i == T (3.36)
Cii det(Ay, ) det(Ay ) det(Ay,) det(4y) det(Akz)

N det(AY ) det(Ag)

Cij det(A; )det(Akr) J#1

(B'—,,-)-- = N det(A; )det(Akf_) L (3.87)
1-&;=1- det(A; i)det(A,;{)’ J=14H
_ - det(AY) det(A; det(AY
(Bk)w - ~CI/.',J _ ( Lz) € (-_ki) — ( 2)’ J#z, sisd] (338)
Qi det(Akz) det(4;.) det(Aki)
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_ det(AY) .
—_— ] —m 2

%3 = T den(A) J# 4
det(4;) . .
A d T
Et(Afc.‘)

¢From relations (3.36) and (3.38) we get the equality of (3.26). From (3.9) we have that

(BL)i; = (3.39)

1—ﬁn=1—

detlelz) =1 A7 1, 3.40
_—i = = 1 < 3
det(A;) a”‘ ; Tkl i)
which, in connection with (3.37) and (3.39), proves the inequality of (3.26). The equality
of (3.27) is a direct consequence of the equality (3.26), while the inequality (3.27) is eas-
ily proved from the inequality of (3.26), by writing the associated Gauss-Seidel matrices in
terms of the nonnegative lower and upper triangular parts of the Jacobi ones and the proof
of our assertion is complete. O

We remark here that our proposed multiindexed method is the most general method,
among many other improved methods, based on elimination techniques. It is a generalization
of the block elimination improved method proposed by Alanelli and Hadjidimos [1], [2]. They
have studied the block Milaszewicz’s improved method, which eliminates the elements of the
first k; columns of A below the diagonal. This is precisely the multiindexed method with
ki=(123 .- 4—1), i=1(1)k and k; = (123 --- k;), otherwise.

As regards the cost of the present method we can observe that, for the construction of
the matrix S, we have to solve an m x m linear system for each row which requires a cost of
O(m?®n) ops. The cost of the matrix-matrix product (I + S)A is O(mn?) ops. Then follows
the standard iterative process of Jacobi or Gauss-Seidel method which requires a cost of
O(n?) ops per iteration. We can remark here that, to obtain an efficient algorithm, the
number m must be chosen very small and independent of the dimension n. Thus a question
can be raised here which sets an open problem: Which is the best choice of m? Observe that
by increasing m what is gained in number of iterations is lost in the construction of S and
in the matrix-matrix product. Which is then the golden section? This also depends on the
matrix A. Another question that can be raised is: How can one choose the multiindices &;’s?
This is very difficult to anwer. As we worked in the “best” Jacobi or Gauss-Seidel algorithm,
we can also give searching algorithms by using sufficient criteria instead of sufficient and
necessary ones. In the “best” case, where we had m = 1, the cost of the searching algorithm
was O(n?). If we take m = 2, we have to do a double searching per row, so the cost increases
to O(n®) and the algorithm becomes non-efficient. If the value of m is increased further,
the power of n in the cost increases too. So, the only efficient searching algorithm is the
one where we search along one component of the multiindex, taking the others fixed. As
we will see in the numerical examples, in many cases, by taking the multiindices fixed, the
multiindexed algorithm is better than that of the “best” preconditioned algorithm.
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4 Numerical Examples

Below we present four representative example matrices (taken from [6]) for which the spectral
radii of the corresponding iteration matrices considered are given in the subsequent two
Tables for the Jacobi and Gauss-Seidel method, respectively. In the Tables, M, G, C, B
and M, denote the Milaszewicz’s, the Gunawardena et al’s, the Cyclic, the “Best” and the
multiindexed, with m = 2, preconditioner, respectively. For the multiindexed preconditioner
we have fixed the multiindices by taking ky = (2 n)T, kk=(G—-1 i+1)7, i=21)n-1
and k, = (1 n—1)7. In other words we have eliminated the elements corresponding to the
Cyclic preconditioner and their transposed ones.

1.00000 —0.00580 —0.19350 —0.25471 -0.03885
—0.28424 1.00000 —0.16748 —0.21780 —0.21577
Ay = | —0.24764 —0.26973 1.00000 —0.18723 —0.08949 |,
—0.13880 —0.01165 —0.25120 1.00000 —0.13236
| —0.25809 —0.08162 —0.13940 —0.04890 1.00000

1.00000 —0.15359 —0.24342 —0.02303 —0.03363
—0.01756 1.00000 —0.00630 —0.14703 —0.18174
Ay = | —0.01087 —0.03714 1.00000 —0.25258 —0.17673 |,
—0.12507 —0.01414 -0.07603 1.00000 —0.14130
—0.00515 —0.24496 —0.23477 —0.27707 1.00000

1.00000 —0.27149 -0.20650 —0.02972 —0.12557 ]
—0.12416  1.00000 —0.18328 —0.07729 —0.25528
Az = | —0.31163 —0.02827 1.00000 —0.15184 —0.39463 |,
—0.12292 —0.00477 -0.23299 1.00000 —0.20115
—0.37067 —0.09086 —0.20368 —0.30835 1.00000

1.00000 —0.23661 —0.37369 —0.25833 —0.05480
—0.13602 1.00000 —0.10578 —0.38675 —0.32750
Ay = | —0.12569 —0.01525 1.00000 —0.26597 —0.17207
—0.14603 —0.18344 —0.34914 1.00000 —0.35613
| —0.15730 —0.34795 —0.09515 -0.00397 1.00000 |

In the first column of the following two Tables we give the spectral radii of the non-
preconditioned method and, in the other columns, the associated spectral radii of the corre-
sponding improved methods, indexed in the head of the Tables.

Jacobi method
Matrix M G G B My

Ay 0.629054 | 0.553502 | 0.584773 | 0.572500 | 0.553502 | 0.463763
Ay 0.484223 | 0.460575 | 0.418960 | 0.418438 | 0.378143 | 0.362226
As 0.758521 | 0.693935 | 0.715067 | 0.692129 | 0.690212 | 0.624807
Ay 0.806792 | 0.767901 | 0.763008 | 0.756508 | 0.729308 | 0.708140




Gauss-Seidel method

Matrix M G (8 B M,
A 0.384958 | 0.295976 | 0.285946 | 0.247030 | 0.258751 | 0.215618
A, 0.266686 | 0.232881 | 0.160474 | 0.159189 | 0.144649 | 0.141635
As 0.603046 | 0.480367 | 0.497869 | 0.428684 | 0.405759 | 0.394486
Ay 0.684691 | 0.622791 | 0.568660 | 0.546671 | 0.557928 | 0.511027
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We can remark here that, in both methods, the multiindexed preconditioner is better than
all the others, the “best” preconditioner is better than the remaining ones, the cyclic precon-
ditioner is better than the rest except in one case for the Jacobi method, the Gunawardena
et al’s preconditioner is better than the Milaszewicz’s one for the Gauss-Seidel method, while
the score of the last two preconditioners is two-to-two for the Jacobi method. Also, we can
see that in the matrix A, and the Jacobi method, the Milaszewicz's and the “best” precondi-
tioners are equivalent. We have checked this case and we have seen that both preconditioners
coincide except that the “best” one eliminates one more element in the first row. As was
noticed in the beginning of Section 2, the Milaszewicz’s preconditioning matrix is reducible,
the elimination of one element of the first row does not reduce the spectral radius and thus
we have the equivalence observed.

For 10000 randomly generated nonsingular M —matrices for n = 10, n = 20 and n = 50
we have determined the spectral radii of the iteration matrices of all the methods mentioned
previously. Below, we present two Tables with results of percentages, for the Jacobi and
Gauss-Seidel methods, respectively. The numbers in the Tables represent the percentages in

which the method indexed in the first column is better than the one indexed in the head of
the Table.

Jacobi method

%=10 = 20 == 50

M G C B M G C B M G C B
M 60.88 | 48.8 | 6.19 58.01 | 48.94 | 1.35 54.61 | 48.98 0
G || 39.12 0 1.05 || 41.99 0 0.06 | 45.39 0 0
C | 51.2 100 2.88 | 51.06 | 100 0.19 || 51.02 | 100 0
B | 93.81 | 98.95 | 97.12 98.65 | 99.94 | 99.81 100 100 100
M, || 99.83 | 100 100 | 97.23 || 99.99 | 100 100 | 99.42 | 100 100 100 | 99.96

Gauss-Seidel method
n =10 n=20 n = 50

M G C B M G G B M G C B
M 2.54 0.44 | 1.08 0.1 0.02 0 0 0 0
G | 97.46 0 36.62 || 99.9 0 25.49 || 100 0 5.11
C |/ 99.56 | 100 56.63 || 99.98 | 100 36.34 || 100 | 100 Tld
B || 98.92 | 63.38 | 43.37 100 | 74.51 | 63.66 100 | 94.89 | 92.87
M, || 99.75 | 100 100 | 68.39 | 100 100 100 | 44.8 || 100 | 100 100 | 8.95

We have to remark here that for the Jacobi method and for n large enough, the mul-
tiindexed improved method is 100% better than all the others. The “best” preconditioner
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is 100% better than the remaining ones, the cyclic preconditioner is 100% better than that
of Gunawardena et al’s, while the last two preconditioners tend to be equivalent, regarding
their performance, to the one of Milaszewicz’s, as n increases. For the Gauss-Seidel method
we can see that the “best” preconditioner is better than all the others, then follow the multi-
indexed, the cyclic, the Gunawardena et al’s and finally the the Milaszewicz’s preconditioner.
At this point, another question is raised: Is the “best” preconditioner indeed better than
the multiindexed one? The answer is no! It depends on the choice of the multiindices. In
this example we have chosen one element over the diagonal and one under it. We observe
here that the elimination of the over-diagonal elements play the most important role for the
Gauss-Seidel method than that of the under-diagonal one. Since we have chosen one fixed
over-diagonal element per row, for the multiindexed preconditioner, while for the “best” one
we have searched one element per row (we think that the most of them are over-diagonal
elements), the last preconditioner becomes better than the first one. It has been checked
that the multiindexed preconditioner (m = 2) is 100% better than all the others for the
Gauss-Seidel method if we choose both elements to be over-diagonal for each row. So, the
numerical examples confirm the theoretical results for the proposed improved techniques.
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